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Abstract 

Using methods of group cohomology the definitions of global and local anomalies are revisited 
taking into account the fact that the action of the gauge group on the space of connections is not 
free. The global S U (2) anomaly appears as an abelian one. © 1999 Elsevier Science B.V. All rights 
reserved. 
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1. Introduction 

In his 1982 paper [1] Witten clarified the problems arising in quantizing an SU(2) gauge 

theory with an odd number of chiral fermion doublets by showing the mathematical incon- 

sistency of the theory (in an odd topological sector). This was the starting point of global 

anomalies ,  a well-known, completely understood subject. 

Nevertheless, some minor questions remain, and in this note we revisit one of them; in 

particular, we observe that the interpretation of the S U  (2) anomaly depends on the "gauge 

group" that one takes in order to have a free  action on the space of connections. 

When one takes into account the action of the center the global gauge anomaly appears 

to be an abelian one. 
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The usual picture is that the origin of the anomalies problem is the lacking of gauge 

invariance of the effective action; local anomalies arise when considering "infinitesimal" 

gauge transformation, while global anomalies are connected with "large" transformation 

(i.e. not in the connected component of the identity). 

The general framework for testing the possible occurrence of anomalies in field theories 

can be constructed in terms of the theory of group actions on line bundles (see e.g. [2] and 
references therein). 

In this note we briefly review this topological construction through the application of 

methods of group cohomology. 

The starting point is the concept of F-line bundle over a principal F-bundle P -~ M. In 

physical applications P is the configuration space, while G is the invariance group of the 

theory and the effective action 2 ( p )  is a section of this F-line bundle. 

The relevant cohomology group in which the anomalies live is interpreted as the kernel 

of the map induced in (integer) cohomology by the projection map of the principal fibration 

P. Local and global anomalies are split via the quotient fibration P / C o  (where G0 is the 

identity connected component of G) " P t_~ p ,  = P / C o  ~ M = P'/zro(G).  Then some 

spectral sequences analysis applies to describe the "anomalies groups" and the "anomalies 

sequence". 

In gauge theories P should be the space of connections, G the gauge group and the F-line 

bundle the determinant index bundle of the Dirac operator actings on fermions (see also 

[3]). 

However, the action of G on P is not free and in order to have a principal  bundle two 

different constructions can be introduced (see e.g. [4]). 

One can either reduce the space of all connections to the space of irreducible connections 

and the gauge group to its quotient by the center of SU(2) (Z2), or simply reduce the gauge 

group to the group of  poin ted  gauge transformation. 

Note that in our case of a SU(2) theory over S 4 with the gauge fields in a non-trivial 

topological sector, all connections are irreducible (see [5]). 

Witten's point of wiew was to use the pointed gauge transformation, but the other one 

is perfectly equivalent if the action of the center on the determinant bundle is taken into 

account (note that the center acts trivially on the connections). 

2. Group cohomology 

If G is a group and A/I a right F-module, the group cohomology with coefficients in .A4, 

H*(G, A/l), is the cohomology of the complex C*(G, 2v'/), where C n (G, .3,4), the module 

of n-cochains, is the abelian group of maps from G × G × • • - × G to A//. The coboundary 
operator, d '~ : Cn(G, A4) ~ C n+l (G, A,/), is 

11 

d n F ( g l  . . .  g,,+l) = F(g2 . . .  gn+l)gl  + Z ( - 1 )  i F ( g l  . . .  gigi+l • . .  g,,+l ) 

I 

+ (--1) "+1 F ( g j  . . .  g,,). 
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The module of  n-cochains C n (~, .A/I) is a F-module with a F-action given by 

(Fg) (g i  . . .  gn) = F ( g - l  g l g . . ,  g - l  gng)g. 

This action is trivial on H*(G, A4). 

When 7-/is a normal subgroup of G, one has an exact sequence 

0---~ HI(G/7-/,.AA 7-t) ~ HI (~ , .A4)  ff-~ HI(7-/, A4) ~ 

T --+ H2(~/7_[ ' .Alia) i ~  n 2 ( ~  ' .A/l), 

where, for a F-module A/', we have denoted by A/"0 the G-invariant elements. The homo- 

morphisms res  and i n f  are, respectively, the restriction to 7-[ of  the cocycles of  G, and the 
inflation, i.e. the composition of the cocycles of G/7-( with the projection p : G --+ G/7-/. 

The homomorphism T is the transgression. 

When 7-[ is a f inite index normal subgroup of G, there exists a homomorphism, called 
corestriction, going in the opposite direction: cor : H*(7-/, .A/l) --+ H*(G, A/l). It is the 
homomorphism defined, in dimension zero (where cor : .A/I 7~ --+ .A/IG), by 

cor(m)  = Z m~, 
c~_~/~ 

where, for each coset c ~ G/7-[ choose, once and for all, a representative ~ requiring that 

for c = 7~, g = 1. Note that, for g c G, gg and ~gg are such that ggFgg- 1 c ~ .  The definition 
of cor in dimension one is 

(coru)(g)= Z u(gg~g-1)6" 

An important property of  cor is that the two compositions cor .  res  and re s .  cor are both 

the multiplication by n = (G : 7-/). It follows that, for any m different from zero, na = 0 

for any a ~ Hm(G/7-[, M ~ ) .  

3. The anomalies sequence 

The elementary properties of  group cohomology briefly recalled in Section 2 turn out 

to be well suited for a description of anomalies. The only point is to find the "relevant" 
G-module .A/[. 

The interpretation of the effective action Z as a section of a G-line bundle over P,  gives 
naturally that .A4 = C*(P) ,  the fight F-module of  the non-vanishing functions from P to C, 

with the natural action ( f g ) ( p )  = f ( p g ) .  As usual, we switch to a multiplicative notation 
for C* and, therefore, for the cohomology. 

A one-cochain F : G ~ C*(P) ,  putting f ( p ,  g) = F ( g ) ( p ) ,  gives a map f : P × 
G --+ C*, and the cocycle condition becomes f ( p ,  gig2) = f ( p g l ,  g e ) f ( P ,  gl) .  The 
cohomology group H t(G, C*(P) )  represents, geometrically, the group of F-isomorphism 
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classes of topologically trivial F-line bundles over P, i.e. the anomalies. This can be seen 

from the exact sequence 

yg* 
1 --+ HI(G, C*(P)) ~ H2(M, Z) ~ H2(p,  Z), 

where the first (injective) arrow is given by f ---> P ×f  C (i.e. we identify (p, c) and 

(pg, f ( p ,  g)c)). 
These F-isomorphism classes represent the anomalies in the sense that in perturbative 

field theory one first defines the effective action Z(p) ;  the obstruction to extending this 
functional to the whole F-orbit is given by the non-triviality of f .  In fact the action of G on 
Z is represented by Z ( p g )  = f ( p ,  g ) Z ( p ) .  

When the group G is not connected, one could find "global anomalies", i.e. trivial G0- 
cocycles that extend non-trivially to G. The non-trivial (and G-invariant) G0-cocycles are 
called "'local anomalies". 

Putting 7-/ = C0 and observing that C*(P) ~') = C*(P'),  the exact sequence of the 
Section 2 gives the "anomalies sequence": 

1 ~ nl(yr0(G), C*(P')) ~--~ HI(G, C*(P)) 

HI(Co, C , (p ) )  G T H2(Tro(G), C*(P')).  

The geometrical interpretation in terms of line bundles over P, applied to the factorisation 

p l p ,  = P/Go g M = U/3ro(G), gives 

l* H2 1 ~ H I(G0, C*(P)) ~ H 2 ( p  ', Z) ~ (P, Z) 

and 

g* 
1 --~ Hl(zr0(G), C*(P'))  -+ H2(M, Z) ~ H2(p ' ,  Z). 

These sequences identify H l (Jro (G), C* (P'))  with the global anomalies and the G-invariant 
elements of HI(Go, C* (P)) with the local anomalies. 

Note that, if 7ro(G) is finite, the anomalies sequence implies that, if H 2 (fro(G), C*(P'))  
is trivial, the map res is surjective. Moreover, cor is injective. This means that the only 
torsion elements in the anomaly group are the global anomalies. All local anomalies, in this 
case, can be detected via the family index theorem and represented by functionals on the 

space P. 
The topological interpretation of the first cohomology group of G with values in the G- 

module C*(P) gives a more explicit description of anomalies in terms of the topology of 

G and P. 
For the local anomalies, H J (Go, C*(P) ) ,  one can apply the low-dimensional exact co- 

homology sequence of the bundle P ~ P'.  In this case (recall that Go is, by definition, a 
connected group) the Leray spectral sequence gives, in absence of monodromy, an exact 
sequence. The result is 

/* 
0 - +  HI ( P ' ,  Z) ~ H I ( p , z )  --~ HI(Co, Z) --~ H2(p ' ,  Z) --+ H2(p,  Z). 
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From this, 

HI(G0, C*(P))  = kerl* = HI(Go, Z ) / H I ( P ,  Z). 

In the case of  gauge theories, where P is the space of  connections, all the cohomology of  

P is trivial and we find 

HJ (G0, C*(P))  = HI(G0, Z) = H2(p  ', Z). 

The last group is the group of  line bundles over p1; the effective action is a section of  the 

determinant line bundle of  the Dirac chiral operator over P.  This line bundle is Co trivial if 

the corresponding bundle over P '  has vanishing Chern class. The local anomaly cancellation 

is controlled by the family index theorem that computes precisely this class. 

4. The SU(2) c a s e  

In this section we study the case of  SU(2) from two points of  view. 

In the "usual one", we denote by G* the pointed gauge group and G~ its identity connected 

component. The relevant fibration is P ~ p t  = P/G~ --+ M = P'/zro(G*) where P is 

the space of  connections and zro(G*) = Z2. Since P is contractible, :r2(P')  = Zrl (G~), 

z q ( P ' )  = zro(G~) = 0 and : ro(P ' )  = 0. This means (by Hurewicz) that H2(P', Z) = 
zG (G~) = Z2. From universal coefficients theorem we find H 2 ( U ,  Z) = 0 and H 2 (M, Z) = 

Z2. In fact H 2 ( p ~, Z) = Free H2 ( P t, Z) ~ T or Hl ( P~, Z) and H2(M, Z) = Free H2 ( M , Z) 

@TorHl (M, Z). 

Now recall that H1 (M, Z) = zro(G*) = Z2 and that H2(M, Z) must be a torsion group 
due to res • cor = 2. 

This gives the "usual" results: local anomalies are absent and there might be a global 

anomaly whose square is one. Of course, this "virtual" global anomaly must be computed 

as Witten did (our discussion cannot distinguish between + 1 and - 1 in Z2). From the other 

point of  view, we consider the group ~ = F / Z ,  where Z is the center of  G (in our case 

Z = Z2). 

For odd topological charges (see [5]) we have rr0(~) = 0 : global anomalies are absent. 
Also local anomalies are absent: from the homotopy of  the fibration ~ ---> P ---> M = 

P / ~  we have 7rl (M) = 0 = H1 (M, Z) and H2(M, Z) = rr2(M) = rrl (~). Moreover from 
the fibration Z2 --> G -~ ~ one can conclude that rG (~) is a torsion group and, finally, 
H2(M, Z) = Free H2(M, Z) ~ Tor H1 (M, Z) = 0. 

Of course this is not the end of  the story; the center Z2 acts on the determinant bundle 
with a scalar action of  weight equal to the ordinary index of  the Dirac operator (see e.g. 

[4, p. 189]). This means that i f  this index is odd, as is in the Witten case of  odd topological 
sector, we have a topologically trivial line bundle with a non-trivial group action, i.e. an 
anomaly. 

This anomaly is not a global anomaly in the usual sense but is more similar to a discrete 
abelian chiral one. 

Note that in this case no use is made of  the family index. 
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